均值不等式的推广与应用_均值不等式的推广

发布时间:2023-06-02 00:00:49
来源:科学教育网


(资料图片)

生活中,很多人都不知道均值不等式的推广与应用_均值不等式的推广,其实非常简单,下面就是小编搜索到的均值不等式的推广与应用_均值不等式的推广相关的一些知识,我们一起来学习下吧!

今天小编肥嘟来为大家解答以上的问题。均值不等式的推广与应用,均值不等式的推广相信很多小伙伴还不知道,现在让我们一起来看看吧!

1、用数学归纳法证明,需要一个辅助结论。

2、 引理:设A≥0,B≥0,则(A+B)n≥An+nAn-1B。

3、 注:引理的正确性较明显,条件A≥0,B≥0可以弱化为A≥0,A+B≥0,有兴趣的同学可以想想如何证明(用数学归纳法)。

4、 原题等价于:((a1+a2+…+an )/n)n≥a1a2…an。

5、 当n=2时易证; 假设当n=k时命题成立,即 ((a1+a2+…+ak )/k)k≥a1a2…ak。

6、那么当n=k+1时,不妨设ak+1是a1,a2 ,…,ak+1中最大者,则 k ak+1≥a1+a2+…+ak。

7、 设s=a1+a2+…+ak, ((a1+a2+…+ak+1)/(k+1))k+1 =(s/k+(k ak+1-s)/(k(k+1)))k+1 ≥(s/k)k+1+(k+1)(s/k)k(k ak+1-s)/k(k+1) 用引理 =(s/k)k ak+1 ≥a1a2…ak+1。

8、用归纳假设。

标签:

AD
更多相关文章